viernes, 26 de febrero de 2010

Efectos de las explosiones nucleares

Explosiones nucleares hasta la fechas:
2 bombas atómicas han sido detonadas en estado de guerra.
Se han realizado alrededor de 2.000 pruebas nucleares.
27 de las cuales han sido realizadas para construcción.






LA ZONA CERO: Ésta es la zona situada en la vertical de donde se produce la explosión (epicentro) y sus cercanías. Aquí la mortalidad alcanza el 100% y todos los efectos se reciben simultáneamente sin desfase alguno. El efecto conjunto es tan brutal que no puede quedar nada en pie. Se le conoce también como área de devastación o aniquilación total. De hecho, lo único que puede quedar tras la explosión en ese lugar es un enorme cráter de varios metros. La zona cero solo está presente para explosiones a muy baja altitud , subterráneas poco profundas o a ras de suelo. Para la bomba que nos ocupa el resultado es un cráter de 3 km de diámetro y 60 metros de profundidad, la altura de un edificio de 20 plantas.

DESTELLO LUMINOSO:
Lo primero que se hace presente, a simple vista, en la explosión de una bomba atómica es su potente destello de luz. Y esto es solo una pequeña parte de los fotones emitidos. La mayoría poseen longitudes de onda mucho más cortas que van desde los rayos X al gamma extremo. El destello se propaga a velocidad c y cegará temporalmente a toda persona que se encuentre mirando en la dirección de la explosión en un radio de 500km. Para los que se encuentren en distancias cortas las lesiones oculares pueden llegar a ser permanentes. En una bomba de 20 Mt la emisión de luz intensa duraría en torno a 17,3 s .
Por esta razón en todos los ensayos nucleares es obligado llevar puestas gafas especiales ya que a pesar de encontrarse a distancia segura para todos los demás efectos el del flash luminoso es, con diferencia, el que más alcance tiene.
El flash lumínico se produce por los mismos mecanismos de absorción y reemisión por los que se produce el pulso térmico que se detalla más abajo.
Se puede decir que con la explosión aparecería de repente un segundo sol mucho más luminoso que el real. Este sol no solo luciría con mucha más intensidad durante unos milisegundos sino que también quemaría con más fuerza como se verá en el siguiente apartado. Si la detonación ocurre en plena noche, durante unos diez a veinte segundos la zona afectada estará más iluminada que a plena luz del día.

LLUVIA RADIOACTIVA LOCAL:
Los daños inmediatos terminan finalmente con el fallout o lluvia radiactiva local. Gran parte de las cenizas y polvo en ascensión procedentes de la explosión empiezan a depositarse de nuevo sobre el suelo horas después. Todo este material está sumamente irradiado. Esto incrementa los niveles de contaminación radiactiva de la zona pero no solo eso. Llena el aire de partículas que pueden ser ingeridas por todos los supervivientes en el área por vía respiratória. Su acumulación en la piel ya es de por sí nociva no hace falta imaginar los daños que conlleva respirar dicho polvo. El área de deposición de la lluvia dependerá de las condiciones atmosféricas posteriores a la detonación.
Esta lluvia no hay que entenderla en un sentido literal. Son partículas que caen y se van depositando paulatinamente contaminándolo todo. Pero puede ocurrir que por las condiciones meteorológicas del momento llueva de verdad en alguna parte cercana a la explosión. En esos puntos sí se produce una lluvia radiactiva en un sentido estricto, rainfall. Estos lugares reciben una especial dosis de contaminación por lo que allí donde llueve realmente, suele quedar lo que se llama un punto caliente donde la intensidad de la contaminación es muy elevada.

ALGUNOS DE LOS EFECTOS RETARDADOS SON:

Incendios:
En un ataque nuclear limitado sobre ciudades la principal causa de muerte a lo largo de las horas posteriores a la detonación serán sin duda los incendios. Estos se forman a lo largo de toda el área de efecto de la bola de fuego. Pero también en la periferia principalmente fruto de las múltiples explosiones de conducciones de gas, gasolineras y vehículos. Estos incendios aislados pueden ser extremadamente virulentos si las condiciones se prestan. Dependerá en gran medida de las características de construcción de edificios y de la cantidad de vegetación colindante (parques, jardines...) el que dichos incendios crezcan. Igual de importantes serán las condiciones atmosféricas (un aire ventoso y seco sería lo ideal). Pero el viento está garantizado en las zonas próximas a la explosión. El reflujo de retorno avivará las llamas y aportará oxígeno a los incendios que se unirán rápidamente entre sí. Si las condiciones son óptimas el incendio central irá absorbiendo todos los fuegos periféricos hasta formar una gran masa llameante autosostenida. El calor producido en su centro funde metales y quiebra los edificios aún en pie. No tarda en formarse un sistema de bajas presiones debido al aire abrasador que asciende desde el epicentro. El aire circundante empieza a caer en espiral formándose una corriente ciclónica que a medida que el incendio toma proporciones gigantescas crece en velocidad e intensidad. Esta corriente mantiene el incendio con un aporte constante de oxígeno renovando el aire continuamente. Se crea así una tormenta de fuego imposible de detener que acaba engullendo toda la ciudad por completo.

Contaminación radiactiva:




La contaminación radiactiva proviene de los materiales y subproductos producidos en las reacciones de fisión. Este efecto no se debe confundir con la lluvia radiactiva local. La contaminación radiactiva que permanece tiempo después de la detonación lo hace de dos formas. Por una parte los terrenos colindantes suelen quedar no solo irradiados por la radiación ionizante sino también por los desechos radiactivos de la propia bomba. Estos desechos serán mayores o menores según sea el tipo de bomba. Hoy día existen ingenios termonucleares de pequeña potencia que apenas usan material radiactivo como cebador. Son las llamadas bombas nucleares limpias. Otras en cambio hacen uso de mayores cantidades de material fisible para ampliar el rendimiento de la explosión en una tercera y mucho más eficiente fase de fisión. Se trata de las bombas nucleares sucias. Sea cual sea el caso lo cierto es que en todas las bombas fabricadas hasta la fecha se dispersan una cierta cantidad de residuos radioactivos. Estos residuos contaminan el área próxima a la explosión por lo que frecuentemente hará falta llevarse la tierra contaminada para que la zona vuelva a ser habitable.
Pero aún hay un efecto peor. Se trata de la lluvia radiactiva global. En inglés, global fallout. En las bombas de hidrógeno gran cantidad de residuos son impulsados a altitudes estratosféricas, capa en la cual permanecen durante años o décadas. Esto hace que tengan tiempo de dispersarse por todo el globo y cuando estos residuos vuelvan a caer lo hagan en quién sabe qué región. Éste fue uno de los motivos que impulsó el tratado de prohibición de pruebas atmosféricas, espaciales y submarinas. Y es que aún actualmente la mayor parte de la contaminación radiactiva de la atmósfera terrestre es debida a las pruebas nucleares atmosféricas llevadas a cabo a partir de la década de los 50.

Destrucción de la capa de ozono:




Si el intercambio nuclear adquiere magnitudes globales entonces la capa de ozono se verá muy debilitada por la presencia de abundantes óxidos de nitrógeno en la atmósfera y por el propio calor de las explosiones. Esto llevaría a una sinergia producida por el propio holocausto que se materializaría en un aumento de la radiación ultravioleta y por consiguiente una potenciación de las malformaciones, esterilidad, mutaciones y cánceres ya muy incrementados por el aumento de radioactividad en el ambiente.




Invierno nuclear:
A más largo plazo están ya los efectos climáticos de un ataque nuclear mutuo y masivo, lo que en la jerga estratégiconuclear se conoce como intercambio nuclear completo. Naturalmente este efecto no se puede producir en un ataque limitado a pocos objetivos. Pero en el caso de un ataque generalizado los efectos se dan por la multiplicidad y la simultaneidad de las explosiones a lo largo de gran parte del globo. Se consideran dos efectos climáticos conocidos. Ambos van encaminados a incrementar el nivel de oscurecimiento global. Por una parte se hacen más absorbentes las capas altas de la atmósfera mediante el aporte de cenizas y polvo procedentes de los incendios y detonaciones. Esa capa oscura tapa los rayos solares como un manto oscuro. Se sabe que una alta atmósfera más cálida conlleva una superficie más fría y eso es lo que ocurre. Así mismo, como se ha comentado antes, las detonaciones atmosféricas generan grandes cantidades de óxidos de nitrógeno. Gas que a baja altitud contribuye al calentamiento (efecto invernadero) pero que a las alturas a las que es transportado por las explosiones nucleares se convierte en un potente gas reflector, que absorbe y priva a la superficie de una parte importante de la radiación que incide sobre la Tierra.


hasta pronto, su amiga: mayi gonzález.

jueves, 25 de febrero de 2010

Explosiones nucleares





Las explosiones nucleares producen muy diversos tipos de efectos todos ellos tremendamente destructivos en todos los aspectos. Se distinguen en dos categorías. Efectos inmediatos o primarios y efectos retardados o secundarios. Entre los inmediatos estarían la onda expansiva, el pulso de calor, la radiación ionizante y el pulso electromagnético (EMP). En el grupo de los retardados estarían los efectos sobre el clima, el medio ambiente así como el daño generalizado a infraestructuras básicas para el sustento humano. A pesar de la espectacularidad de los primeros son los daños secundarios los que ocasionarían el grueso de las muertes tras un ataque nuclear. Pero los daños no solo deben medirse por separado ya que en muchos casos actúan efectos sinérgicos es decir, que un daño potencia el otro. Por ejemplo, la radiación disminuye las defensas del organismo y, a su vez, agudiza la posibilidad de infección de las heridas causadas por la explosión aumentando así la mortalidad. Es precisamente esa multitud de efectos y sinergias lo que hace de las armas nucleares el arma más destructiva que existe.
La emisión inicial de energía se produce en un 80% o más en forma de rayos gamma pero éstos son rápidamente absorbidos y dispersados en su mayoría por el aire en poco más de un microsegundo convirtiendo la radiación gamma en radiación térmica (pulso térmico) y energía cinética (onda de choque) que son en realidad los dos efectos dominantes en los momentos iníciales de la explosión. El resto de la energía se libera en forma de radiación retardada (lluvia radiactiva) y no siempre se suele contar a la hora de medir el rendimiento de la explosión. Las explosiones a gran altitud producen un mayor flujo de radiación extrema debido a la menor densidad del aire (los fotones encuentran menos oposición) y, consiguientemente se genera una menor onda expansiva.
Durante tiempo antes de la invención de la bomba algunos científicos creyeron que su detonación en superficie podría provocar la ignición de la atmósfera terrestre generándose una reacción en cadena global en la que los átomos de nitrógeno se unirían para formar carbono y oxígeno. Este hecho pronto se demostró imposible ya que las densidades necesarias para que se produzcan dichas reacciones han de ser mucho más elevadas que las atmosféricas y si bien es posible que haya reacciones adicionales de fusión en el corazón de la explosión estas no aportan energía suficiente para amplificar y propagar la reacción nuclear al resto de la atmósfera y la producción de elementos pesados cesa enseguida. A pesar de todo esta idea persiste en la actualidad como un rumor malentendido entre mucha gente.

Pruebas Nucleares

Las pruebas nucleares se clasifican como atmosféricas (cuando la explosión tiene lugar dentro de la atmósfera), estratosféricas (en las que el arma nuclear usualmente es transportada en un cohete), subterráneas y submarinas. Las atmosféricas producen una contaminación mayor, mientras en los otros tipos la lluvia radiactiva es más limitada. Las pruebas estratosféricas pueden generar un pulso electromagnético. Asimismo, las pruebas nucleares pueden realizarse mediante lanzamientos desde aeronaves ("airdrop"), o bien situando al arma nuclear en la cima de una torre, en un contenedor impermeable bajo el agua, encima de una embarcación, bajo tierra, o en el espacio exterior mediante el uso de un gran misil (prueba nuclear de gran altitud).

En esta imagen se puede notar lo que causa una Explosión Nuclear





Esta inforamción fue publicada por la creación de su Compañero:
Hector Manuel Cruz Miravete.

Efectos de explosion nuclear

El poder destructivo de una bomba, sea de tipo nuclear o químico, está relacionado directamente con la energía que se libera durante la explosión. La energía que se libera en la explosión de 1 000 kilogramos de TNT (trinitrotolueno) es inmensa comparada con las energías encontradas en nuestras necesidades diarias. Por ejemplo, la detonación de una tonelada de TNT, libera 4 000 veces más energía que la necesaria para alzar un coche de 1 000 kilogramos de peso a una altura de 100 metros. Las explosiones de bombas nucleares liberan energías que son entre 1 000 y 1 000 000 de veces mayores aún que las detonaciones químicas, como sería la del TNT. El poder explosivo de una bomba nuclear, llamado rendimiento, se expresa mediante la comparación con el poder destructivo del TNT, y así se habla de bombas de un kilotón (un kt) si la energía liberada es la misma que se produce al detonar 1 000 toneladas de TNT. La bomba lanzada sobre Hiroshima tuvo un rendimiento cercano a los 13 kt. Si el rendimiento es de 1 000 kt, se trata de una bomba de un megatón (un Mt). Energías del orden de megatones son imposibles de imaginar dentro de las situaciones de nuestra vida diaria. El arsenal nuclear de los Estados Unidos y la URSS juntos hoy en día suma unos 12 000 megatones.
Los efectos de una explosión nuclear dependen de muchos factores, entre ellos el rendimiento del artefacto, la altura sobre la superficie a la que es detonada, las condiciones climáticas, etc. El análisis que se presenta a continuación es el resultado de consideraciones físicas sencillas y de las observaciones y estudios realizados en Hiroshima y Nagasaki, las únicas dos oportunidades en que se han empleado bombas nucleares contra una población. A continuación se describen las consecuencias locales de una explosión nuclear superficial. Si la detonación es subterránea, submarina, o en la alta atmósfera, los resultados serán diferentes. Los efectos se encuentran agrupados en inmediatos (calor, presión, radiación y pulso electromagnético) y tardíos (lluvia radiactiva e incendios extendidos).

Existen tres tipos de dispositivos nucleares:
• explosivos, las bombas atómicas de fisión
• la bomba de hidrógeno o termonuclear
• la bomba de neutrones
La explosión de las dos primeras produce liberación de energía en forma de onda de choque o mecánica en 50%, de radiación térmica en 35% y sólo 15% como radiación ionizante (radiactividad). Por ello, los efectos de la explosión y el fuego son de mucha mayor importancia que la radiactividad. Por el contrario, la bomba de neutrones genera 7 veces más radiaciones ionizantes con efectos mecánicos y térmicos muy reducidos. Por lo que su explosión puede preservar los bienes materiales pero resulta muy mortífera para los seres humanos.

Secuencia de efectos
Inmediatamente después de la explosión se produce una bola de fuego extremadamente caliente y luminoso, con una onda térmica y explosiva que causa destrucción y quemaduras a gran distancia. Una bomba H (de hidrógeno) de 500 megatones que explote a una altitud de 30 km. puede incendiar en el suelo un área de 300 km. de diámetro.
Efectos de la explosión radiactiva: Aún cuando las personas no sean afectadas por los factores destructivos térmicos y mecánicos, pueden serlo por los niveles elevados de radiación, ya sea con fallecimiento inmediato por el síndrome de irradiación agudo, o más tardío, dependiendo de las dosis de radiación recibidas y de las medidas terapéuticas implementadas. Los que no mueren inmediatamente sufren especialmente depresión de los sistemas sanguínea e inmunológica, que contribuye al desarrollo de infecciones letales. Además del síndrome de irradiación agudo se producen los efectos secundarios a más largo plazo, como ceguera, cáncer, malformaciones congénitas, mutaciones, etc.
Efectos ambientales: se pueden producir cambios que afectarían a todo el planeta, dependiendo de la magnitud de las explosiones, como depresión de la capa de ozono y dispersión de isótopos radiactivos, lo que produce efectos climáticos y en la salud de las personas en lugares muy lejanos al sitio de la explosión. También se produciría oscurecimiento y enfriamiento del planeta, sometiéndose los seres humanos bruscamente a un entorno de tipo polar (invierno nuclear). Todo esto se traduciría en grandes cambios en la flora y la fauna con consecuencias impredecibles para la pesca, crianza de ganado y agricultura en general, que podría generar una crisis alimentaria a nivel mundial.


Publicado por su Compañera y Amiga:
María Esther Lorenzo García

Explosión Nuclear



EFECTOS INMEDIATOS
Calor
Una millonésima de segundo después de una explosión nuclear la temperatura dentro de la bomba alcanza unos 10 000 000 °C. El material que compone la bomba y el aire que la rodea brillan intensamente formando lo que se conoce como la bola de fuego. El brillo de la bola, unos segundos después de la detonación de una bomba de un megatón, es mayor que el del Sol al mediodía a distancias de hasta 80 km del punto cero. La bola se expande y en 10 segundos alcanza diámetros de un par de kilómetros para detonaciones de un Mt, y luego comienza a contraerse. El aire alrededor de la bola se calienta, la hace ascender a velocidades de unos 100 metros por segundo y forma el conocido hongo, cuyo tallo lo forma una corriente de aire caliente ascendente. A medida que la bola de fuego se enfría, la condensación de vapor de agua causa el color blanco, como una nube, en su extremo superior. Después de cuatro minutos, la nube de una explosión de 1 Mt ha llegado a su máxima altura, 20 km, y su diámetro alcanza unos 16 km.
El calor liberado en la explosión llega a los lugares cercanos después de algunos segundos en la forma de un pulso térmico. La energía transportada por este pulso se mide en calorías por centímetro cuadrado por segundo. Como ejemplo, mencionamos que el Sol brillando normalmente entrega 2 calorías por centímetro cuadrado cada minuto. El daño que el pulso térmico puede causar depende de varios factores: la energía que transporta, el tipo de material con que se encuentra, y el tiempo durante el cual actúa.
En los seres humanos expuestos al pulso, el daño además depende de la pigmentación de la piel, siendo mayor para pieles morenas que blancas debido a la mayor absorción térmica que presentan las sustancias oscuras. Una quemadura de segundo grado —aquella en que se pierde parte de la piel— cicatriza normalmente en dos semanas, siempre que menos de 25% del cuerpo haya sido quemado; en caso contrario, se requiere de hospitalización.


Presión
La energía liberada por la explosión nuclear calienta la zona de la bomba —de aproximadamente un metro de diámetro inicial— a altas temperaturas. Esto produce una región de altísima presión que ejerce gran fuerza sobre las capas de aire vecinas, las que comienzan a expandirse a gran velocidad. La velocidad es mayor que la del sonido en aire, así que se forma una onda de choque esférica compuesta por aire muy denso que se desplaza alejándose del punto de explosión.
Radiación
Las reacciones nucleares que ocurren durante la explosión de una bomba producen diferentes tipos de partículas energéticas y de radiaciones. Algunas son emitidas de inmediato y otras, tiempo después de la detonación. En esta sección nos referiremos a la radiación que es emitida dentro del primer minuto después de la explosión.

Pulso electromagnético
En contraste con los tres efectos inmediatos ya descritos, el pulso electromagnético no causa ni la destrucción física de viviendas ni daño directo a los seres vivos. En cambio, puede ser devastador para los sistemas telefónicos, de comunicaciones, de cómputo, y en general para cualquier circuito que contenga componentes electrónicos. Los efectos del pulso llegan a miles de kilómetros de distancia de la explosión


Esta Información fue realizada por su Compañera y Amiga:
Danae del Carmen Mendo Sosa.

miércoles, 24 de febrero de 2010

Explosiones Nucleares


Las explosiones nucleares producen muy diversos tipos de efectos todos ellos tremendamente destructivos en todos los aspectos. Se distinguen en dos categorías. Efectos inmediatos o primarios y efectos retardados o secundarios. Entre los inmediatos estarían la onda expansiva, el pulso de calor, la radiación ionizante y el pulso electromagnético (EMP). En el grupo de los retardados estarían los efectos sobre el clima, el medio ambiente así como el daño generalizado a infraestructuras básicas para el sustento humano. A pesar de la espectacularidad de los primeros son los daños secundarios los que ocasionarían el grueso de las muertes tras un ataque nuclear. Pero los daños no solo deben medirse por separado ya que en muchos casos actúan efectos sinérgicos es decir, que un daño potencia el otro. Por ejemplo, la radiación disminuye las defensas del organismo y, a su vez, agudiza la posibilidad de infección de las heridas causadas por la explosión aumentando así la mortalidad. Es precisamente esa multitud de efectos y sinergias lo que hace de las armas nucleares el arma más destructiva que existe.

Efectos de una Explosión Nuclear

Los efectos de una explosión nuclear dependen de muchos factores, entre ellos el rendimiento del artefacto, la altura sobre la superficie a la que es detonado, las condiciones climáticas, etc. El análisis que se presenta a continuación es el resultado de consideraciones físicas sencillas y de las observaciones y estudios realizados en Hiroshima y Nagasaki, las únicas dos oportunidades en que se han empleado bombas nucleares contra una población. A continuación se describen las consecuencias locales de una explosión nuclear superficial. Si la detonación es subterránea, submarina, o en la alta atmósfera, los resultados serán diferentes. Los efectos se encuentran agrupados en inmediatos (calor, presión, radiación y pulso electromagnético) y tardíos (lluvia radiactiva e incendios extendidos).



Esta pequeña información fue publicada por la alumna:

Guadalupe Quintas Leo.

jueves, 11 de febrero de 2010

Introducción De La Ecología

La ecología (del griego «οίκος» oikos="casa", y «λóγος» logos=" conocimiento") es la biología de los ecosistemas. Es la ciencia que estudia a los seres vivos, su ambiente, la distribución y abundancia, cómo esas propiedades son afectadas por la interacción entre los organismos y su ambiente. El ambiente incluye las propiedades físicas que pueden ser descritas como la suma de factores abióticos locales, como el clima y la geología, y los demás organismos que comparten ese hábitat.

Ernst Haeckel , creador del término ecología y considerado el fundador de su estudio.
En su trabajo Morfología General del Organismo; está compuesto por las palabras griegas oikos (casa, vivienda, hogar) y logos (estudio o tratado), por ello Ecología significa "el estudio de los hogares" y del mejor modo de gestión de esos.

En un principio, Haeckel entendía por ecología a la ciencia que estudia las relaciones de los seres vivos con su ambiente, pero más tarde amplió esta definición al estudio de las características del medio, que también incluye el transporte de materia y energía y su transformación por las comunidades biológicas.

Una de las ramas mas importantes de la Ecología son las siguientes:

Ecología microbiana: es la rama de la ecología que estudia a los microorganismos en su ambiente natural, los cuales mantienen una actividad continua imprescindible para la vida en la Tierra.

Ecología de Poblaciones:también llamada demoecología o ecología demográfica, es una rama de la demografía que estudia las poblaciones formadas por los organismos de una misma especie desde el punto de vista de su tamaño (número de individuos), estructura (sexo y edad) y dinámica (variación en el tiempo).

Ecología de Comunidades:es la parte de la Ecología que se encarga del estudio del nivel de organización superior de la materia viva llamada comunidad.

Biogeografía: es la ciencia que estudia la distribución de los seres vivos sobre la Tierra, así como los procesos que la han originado, que la modifican y que la pueden hacer desaparecer.

Etoecología:es la ciencia que estudia el comportamiento de los seres vivos en el ambiente.

Ecología del Comportamiento:Sin embargo se entiende por Ecología del comportamiento al estudio de las implicaciones ecológicas y evolutivas de las estrategias de comportamiento de los animales en situaciones relevantes desde el punto de vista de la teoría de la evolución neodarwinista.

Ecología del Paisaje:Estudia los paisajes tanto naturales como antrópicos prestando especial atención a los grupos humanos como agentes transformadores de la dinámica físico-ecológica de éstos.

Ecología Matemáticas:se dedica a la aplicación de los teoremas y métodos matemáticos a los problemas de la relación de los seres vivos con su medio y es, por tanto, una rama de la biología. Esta disciplina provee de la base formal para la enunciación de gran parte de la ecología teórica.

Biología de la conservación:es una reciente disciplina científica de síntesis que surgió en la década del 70, y con mayor fuerza en la del 80, como respuesta a la inminente pérdida de la diversidad biológica. Se ocupa de explorar las causas de la disminución y la rareza de las especies y qué se puede hacer para disminuir los problemas de las poblaciones amenazadas.

Dado por terminado esta pequeña introduccion esperando que les haya sido de su agrado.

Esta pequeña introduccion fue elaborada por el equipo No 4 del 4° "B"